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Separability properties of free groups

Definition

The profinite topology on a group G is given by taking as the neighborhood
basis around the identity all normal subgroups of G of finite index.
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Separability properties of free groups

Definition

The profinite topology on a group G is given by taking as the neighborhood
basis around the identity all normal subgroups of G of finite index.

A group G is subgroup separable if all finitely generated subgroups of G
are closed in its profinite topology.

Note that subgroup H < G is closed iff for each g ¢ H, there is a finite
group K and a morphism 7 : G — K such that n(g) & 7(H).
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Separability properties of free groups

Definition

The profinite topology on a group G is given by taking as the neighborhood
basis around the identity all normal subgroups of G of finite index.

A group G is subgroup separable if all finitely generated subgroups of G
are closed in its profinite topology.

Note that subgroup H < G is closed iff for each g ¢ H, there is a finite
group K and a morphism 7 : G — K such that n(g) & 7(H).

Theorem (Hall 1949)

Free groups are subgroup separable.
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Separability properties of free groups

Definition

The profinite topology on a group G is given by taking as the neighborhood
basis around the identity all normal subgroups of G of finite index.

A group G is subgroup separable if all finitely generated subgroups of G
are closed in its profinite topology.

Note that subgroup H < G is closed iff for each g ¢ H, there is a finite
group K and a morphism 7 : G — K such that n(g) & 7(H).

Theorem (Hall 1949)

Free groups are subgroup separable.

Theorem (Ribes-Zalesskil 1993)

Free groups are 2-product separable: the product H1 Hz of any two finitely
generated subgroups Hy, Hy < F is closed in the profinite topology of F'.
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Extension property for partial automorphisms

Throughout, structures are L-structures for a finite relational language L.

Definition (Herwig-Lascar 2000)

A class C of structures has the extension property for partial automorphisms
(EPPA) if for each M, M’ € C, with M finite and M < M’, and for each
collection p1, ..., p, of partial automorphisms of M extending to (total)
automorphisms of M’, there is a finite structure N € C containing M as a
substructure such that pi,..., p, extend to automorphisms of N.
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collection p1, ..., p, of partial automorphisms of M extending to (total)
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Extension property for partial automorphisms

Throughout, structures are L-structures for a finite relational language L.

Definition (Herwig-Lascar 2000)

A class C of structures has the extension property for partial automorphisms
(EPPA) if for each M, M’ € C, with M finite and M < M’, and for each
collection p1, ..., p, of partial automorphisms of M extending to (total)
automorphisms of M’, there is a finite structure N € C containing M as a
substructure such that pi,..., p, extend to automorphisms of N.

Note that the class of all sets has the EPPA.

Theorem (Hrushovski 1991)
The class of all graphs has the EPPA.
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Extensions of partial group actions

Definition (Coulbois 2001)

Let M € C be a finite structure. A map ¢ : G — Part(M) is a partial action
if there is a finite symmetric subset S C G, an extension M < M’ € C, and
an action p : G — Aut(M’), such that for all g € G and m1, my € M:

p(@)(m1)=mz <& g=s1---s and (¢(s1)o---0p(s))mi = mg,

and ¢(s) = p(s)|M for all s € S.
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Extensions of partial group actions

Definition (Coulbois 2001)
Let M € C be a finite structure. A map ¢ : G — Part(M) is a partial action

if there is a finite symmetric subset S C G, an extension M < M’ € C, and
an action p : G — Aut(M’), such that for all g € G and m1, my € M:
e(g)(m)=mz & g=s---sand (p(s1) 00 p(s))m =mz,

and ¢(s) = p(s)|M for all s € S.

Definition

A group G is said to have the extension property for C if for each finite
M € C and each partial action ¢ : G — Part(M), there is a finite structure
N € C containing M and an action ¢ : G — Aut(N) extending ¢.
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Extensions of partial group actions

Definition (Coulbois 2001)

Let M € C be a finite structure. A map ¢ : G — Part(M) is a partial action

if there is a finite symmetric subset S C G, an extension M < M’ € C, and

an action p : G — Aut(M’), such that for all g € G and m1, my € M:
p(g)(m)=mz & g=s---sand (p(s1) 0 0p(s))m =mz,

and ¢(s) = p(s)|M for all s € S.

Definition

A group G is said to have the extension property for C if for each finite
M € C and each partial action ¢ : G — Part(M), there is a finite structure
N € C containing M and an action ¢ : G — Aut(N) extending ¢.

Note that C has the EPPA < all finitely generated free groups have the
extension property for C.
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Connections between extension properties and separability

Theorem (Gitik 1997)
A group is subgroup separable iff it has the extension property for sets.
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Connections between extension properties and separability

Theorem (Gitik 1997)
A group is subgroup separable iff it has the extension property for sets.

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Theorem (Herwig-Lascar 2000; Coulbois 2001)

A group is n-product separable iff it has the extension property for n-cycle
free n-partitioned structures.
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Other profinite topologies?

We’ve seen how the profinite topology on a group encodes its separability
properties with respect to finite quotients. Sometimes, however, we need to
control the order of these finite quotients, or maybe even more information.
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We’ve seen how the profinite topology on a group encodes its separability
properties with respect to finite quotients. Sometimes, however, we need to
control the order of these finite quotients, or maybe even more information.

Definition

A pseudovariety of groups is a class V of finite groups that is closed under
subgroups, quotients, and finite direct products.
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We’ve seen how the profinite topology on a group encodes its separability
properties with respect to finite quotients. Sometimes, however, we need to
control the order of these finite quotients, or maybe even more information.

Definition

A pseudovariety of groups is a class V of finite groups that is closed under
subgroups, quotients, and finite direct products.

We say that a pseudovariety V is closed under extensions if G € V
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Other profinite topologies?

We’ve seen how the profinite topology on a group encodes its separability
properties with respect to finite quotients. Sometimes, however, we need to
control the order of these finite quotients, or maybe even more information.

Definition

A pseudovariety of groups is a class V of finite groups that is closed under
subgroups, quotients, and finite direct products.

We say that a pseudovariety V is closed under extensions if G € V
whenever N, G/N € V for any normal subgroup N < G.

Definition

The pro-V topology on a group G is given by taking as the neighborhood
basis around the identity all normal subgroups N < G such that G/N € V.
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The pro-odd topology and EPPA for tournaments

Finitely generated subgroups of F' need not be closed in its pro-V topology!
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The pro-odd topology and EPPA for tournaments

Finitely generated subgroups of F' need not be closed in its pro-V topology!

Conjecture (Herwig-Lascar 2000)

Let H < F be finitely generated. Then the following are equivalent.
1. H is closed in the pro-odd topology (where V = odd-order finite groups).
2. Forallwe F, if w? € H, then w € H.
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The pro-odd topology and EPPA for tournaments

Finitely generated subgroups of F' need not be closed in its pro-V topology!

Conjecture (Herwig-Lascar 2000)
Let H < F be finitely generated. Then the following are equivalent.

1. H is closed in the pro-odd topology (where V = odd-order finite groups).
2. Forallwe F, if w? € H, then w € H.

Theorem (Herwig-Lascar 2000)

The above conjecture is equivalent to the EPPA of the class of tournaments.
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The pro-odd topology and EPPA for tournaments

Finitely generated subgroups of F' need not be closed in its pro-V topology!

Conjecture (Herwig-Lascar 2000)

Let H < F be finitely generated. Then the following are equivalent.
1. H is closed in the pro-odd topology (where V = odd-order finite groups).
2. Forallwe F, if w? € H, then w € H.

Theorem (Herwig-Lascar 2000)

The above conjecture is equivalent to the EPPA of the class of tournaments.

The proof uses a strengthening of the Ribes-Zalesskil theorem (free groups
are product separable) to pro-V topologies:
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Relative product separability

Theorem (Ribes-Zalesskii 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F
be a free group. If Hy,..., H, are finitely generated subgroups of F' which

are closed in the pro-V topology of F, then their product H; - - - H, is also
closed in the pro-V topology of F'.
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Relative product separability

Theorem (Ribes-Zalesskii 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F
be a free group. If Hy,..., H, are finitely generated subgroups of F' which

are closed in the pro-V topology of F, then their product H; - - - H, is also
closed in the pro-V topology of F'.

We thus say that free groups are product separable relative to V.
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Relative product separability

Theorem (Ribes-Zalesskii 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F
be a free group. If Hy,..., H, are finitely generated subgroups of F' which
are closed in the pro-V topology of F, then their product H; - - - H, is also
closed in the pro-V topology of F'.

We thus say that free groups are product separable relative to V.

Question

Is there a natural class of structures C for which a group G is n-product
separable relative to V iff G has the extension property for C?
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Relative product separability

Theorem (Ribes-Zalesskii 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F
be a free group. If Hy,..., H, are finitely generated subgroups of F' which
are closed in the pro-V topology of F, then their product H; - - - H, is also
closed in the pro-V topology of F'.

We thus say that free groups are product separable relative to V.

Question

Is there a natural class of structures C for which a group G is n-product
separable relative to V iff G has the extension property for C?

Conjecture

A group G is 2-product separable relative to V iff every partial action ¢ of
G on a finite graph M with closed stabilizers extends to an action ¢ of G
on a finite graph N > M such that p(G) is a pro-V group.
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Hall’s Theorem

Theorem (Hall 1949)

Free groups are subgroup separable.
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Proof of Hall’s Theorem via Stallings’ foldings

Let H < F be a finitely generated subgroup and let w € F \ H.
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Proof of Hall’s Theorem via Stallings’ foldings
Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.
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Proof of Hall’s Theorem via Stallings’ foldings

Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

1

Figure: Construction of S(H), where H = (zyz~1y~1, yzy~1).
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Proof of Hall’s Theorem via Stallings’ foldings
Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

Y x T
w{ S > AAAAAANAY UE >e
Y Y Y Y
T

1

Figure: Construction of S(H), where H = (zyz~1y~1, yzy~1).
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Proof of Hall’s Theorem via Stallings’ foldings
Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

Y x T T
w{ e > AAANAAAS U AAAAAANAY ’U%
Yy Y Y y{ £ : i Y
T

1

Figure: Construction of S(H), where H = (zyz~1y~1, yzy~1).
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Proof of Hall’s Theorem via Stallings’ foldings

Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

1

Figure: Construction of S(H), where H := (zyz~ 1y~ yzy~1).
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Proof of Hall’s Theorem via Stallings’ foldings

Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

z
v-ﬁ&Q\z AAAAAAAAS z/E >o—)—o<y }z
v

Figure: Construction of S(H), where H = (zyz~1!

y~ L ymyt).
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Proof of Hall’s Theorem via Stallings’ foldings
Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

Y x z z
y Yy y y
C £
S~
&
< y
vi&@z AAAAAAAA z{\>;)—>—<}z S(H)

1

Figure: Construction of S(H), where H := (zyz~ 1y~ yzy~1).
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Proof of Hall’s Theorem via Stallings’ foldings

Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

2. Let S(H)w be obtained by attaching to S(H) a path labelled w to the
distinguished vertex, and then folded. Note that m1(S(H)w) = H.
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Proof of Hall’s Theorem via Stallings’ foldings

Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

2. Let S(H)w be obtained by attaching to S(H) a path labelled w to the
distinguished vertex, and then folded. Note that m1(S(H)w) = H.

Yy y

Figure: Construction of S(H ), where H = (zyz~ 1y~ 1, y?) and w = zyz 1.
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1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

2. Let S(H)w be obtained by attaching to S(H) a path labelled w to the
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1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

2. Let S(H)w be obtained by attaching to S(H) a path labelled w to the
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Proof of Hall’s Theorem via Stallings’ foldings

Let H < F be a finitely generated subgroup and let w € F \ H.
1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

2. Let S(H)w be obtained by attaching to S(H) a path labelled w to the
distinguished vertex, and then folded. Note that m1(S(H)w) = H.

¥ v T vz z Yy z T
Yy Y AAAAAAAS Y y oy AAAAAAAS Y Yy oy
T T T
P N N A oo
pva
T Y T
Y vy
S(H)uw

Figure: Construction of S(H ), where H = (zyz~ 1y~ 1, y?) and w = zyz 1.
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Proof of Hall’s Theorem via Stallings’ foldings

Let H < F be a finitely generated subgroup and let w € F \ H.

1. We associate to H its Stallings’ graph S(H), which is a finite graph
with fundamental group H that expands to a covering of the rose.

2. Let S(H)w be obtained by attaching to S(H) a path labelled w to the
distinguished vertex, and then folded. Note that m1(S(H)w) = H.

3. Expand S(H). to a cover of the rose. The deck transformation
induced by w is nontrivial, so w is separated from H in the quotient.

¥ v T vz z Yy z T
Yy Y AAAAAAAS Y y oy AAAAAAAS Y Yy oy
T T T
P N N A oo
v T
T Y T Y T
Y
z T
Y vy AAAANAAY Y vy Y
S(H)4 .

Figure: Expanding S(H). to a cover of the rose.
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Proof of Hall’s Theorem via EPPA for sets

Clearly, the class of all sets has the EPPA.
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Proof of Hall’s Theorem via EPPA for sets

Clearly, the class of all sets has the EPPA. This implies Hall’s Theorem,
since if H < F is finitely generated and w ¢ H, then the collection

M = {zH : z is a subword of w or of a generator in H}
is a finite subset of M’ .= F/H,
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Proof of Hall’s Theorem via EPPA for sets

Clearly, the class of all sets has the EPPA. This implies Hall’s Theorem,
since if H < F is finitely generated and w ¢ H, then the collection

M = {zH : z is a subword of w or of a generator in H}

is a finite subset of M’ := F/H, and left-multiplication of F on M’ induces
a collection of partial isomorphisms of M extending to total isomorphisms
of some finite N 2 M;
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Proof of Hall’s Theorem via EPPA for sets

Clearly, the class of all sets has the EPPA. This implies Hall’s Theorem,
since if H < F is finitely generated and w ¢ H, then the collection

M = {zH : z is a subword of w or of a generator in H}

is a finite subset of M’ := F/H, and left-multiplication of F on M’ induces
a collection of partial isomorphisms of M extending to total isomorphisms
of some finite N D M; the map « : F — Aut(N) then separates w from H.
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Proof of Hall’s Theorem via EPPA for sets

Clearly, the class of all sets has the EPPA. This implies Hall’s Theorem,
since if H < F is finitely generated and w ¢ H, then the collection

M = {zH : z is a subword of w or of a generator in H}

is a finite subset of M’ := F/H, and left-multiplication of F on M’ induces
a collection of partial isomorphisms of M extending to total isomorphisms
of some finite N D M; the map « : F — Aut(N) then separates w from H.

Theorem (Gitik 1997)

A group is subgroup separable iff it has the extension property for sets.
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The Ribes-Zalesskii Theorem

Theorem (Ribes-Zalesskil 1993)

Free groups are product separable.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (=).

Let ¢ : G — Part(M) be a partial action, let [c1], ..., [cm] be its orbits, and
let H; := Staby(c;).
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (=).

Let ¢ : G — Part(M) be a partial action, let [c1], ..., [cm] be its orbits, and
let H; := Staby(c;). If H; <z G, try M — N :=| |, G/H; via a — o(a)H;,
where o : M — G is such that p(o(a))(¢;) = a, and define N | (o', V') iff
there exist a,b € M and g € G such that ga = a’, gb =¥, and M [ (a,b).
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (=).

Let ¢ : G — Part(M) be a partial action, let [c1], ..., [cm] be its orbits, and
let H; := Staby(c;). If H; <z G, try M — N :=| |, G/H; via a — o(a)H;,
where o : M — G is such that p(o(a))(¢;) = a, and define N | (o', V') iff
there exist a,b € M and g € G such that ga = a’, gb =¥, and M [ (a,b).

1. Let a,d’ € [¢;]- If a # @', then o(a)H; # o(a’) H;.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (=).

Let ¢ : G — Part(M) be a partial action, let [c1], ..., [cm] be its orbits, and
let H; := Staby(c;). If H; <z G, try M — N :=| |, G/H; via a — o(a)H;,
where o : M — G is such that p(o(a))(¢;) = a, and define N | (o', V') iff
there exist a,b € M and g € G such that ga = a’, gb =¥, and M [ (a,b).

1. Let a,d’ € [¢;]- If a # @', then o(a)H; # o(a’) H;.
2. Let a,a’ € [c;] and b, b’ € [¢j]. If M |= (a,b) and M [~ (a, b'), then
o(a')Hio(a)™" # o(b')Hjo (b))
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (=).

Let ¢ : G — Part(M) be a partial action, let [c1], ..., [cm] be its orbits, and
let H; := Staby(c;). If H; <z G, try M — N :=| |, G/H; via a — o(a)H;,
where o : M — G is such that p(o(a))(¢;) = a, and define N | (o', V') iff
there exist a,b € M and g € G such that ga = a’, gb =¥, and M [ (a,b).

1. Let a,a’ € [¢;]. If a # a’, then o(a)H; # o(a’) H;.
2. Let a,a’ € [c;] and b, b’ € [¢j]. If M |= (a,b) and M [~ (a, b'), then
o(a’)Hio(a)™! # o(b')Hjo (b))~
In general, we let N := |_|l G/ K;, where H; < K; <5 G are obtained from
2-product separability of G and satisfy (1) and (2) for all a, a’, b, b’ above.

Zhaoshen Zhai Extension properties and separability September 23, 2025 17/25



Introduction Subgroup separability Product separability V-separability
00000000 0000 ooe 00000000

EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (=).

Let ¢ : G — Part(M) be a partial action, let [c1], ..., [cm] be its orbits, and
let H; := Staby(c;). If H; <z G, try M — N :=| |, G/H; via a — o(a)H;,
where o : M — G is such that p(o(a))(¢;) = a, and define N | (o', V') iff
there exist a,b € M and g € G such that ga = a’, gb =¥, and M [ (a,b).

1. Let a,a’ € [¢;]. If a # a’, then o(a)H; # o(a’) H;.
2. Let a,a’ € [c;] and b, b’ € [¢j]. If M |= (a,b) and M [~ (a, b'), then
o(a')Hio(a)™" # a(b') Ho (b) .
In general, we let N := |_|l G/ K;, where H; < K; <5 G are obtained from

2-product separability of G and satisfy (1) and (2) for all a, a’, b, b’ above.
Note that M is finite, so these K;’s can be obtained uniformly. |

Zhaoshen Zhai Extension properties and separability September 23, 2025 17/25



Introduction Subgroup separability Product separability V-separability
00000000 0000 ooe 00000000

EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (<=).
Let Hi, H» < G be finitely generated subgroups and w ¢ Hy Hs.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (<=).

Let Hi, H» < G be finitely generated subgroups and w ¢ Hy H2. Consider
the graph M’ := G/H, U G/Ha, where (gHi, g’ H2) iff gH1 N ¢'Ha # @, and
let : G ~ M’ by left-multiplication.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (<=).

Let Hi, H» < G be finitely generated subgroups and w ¢ Hy H2. Consider
the graph M’ := G/H, U G/Ha, where (gHi, g’ H2) iff gH1 N ¢'Ha # @, and
let 3 : G ~ M’ by left-multiplication. Let M := {H:, Ho, wH2} < M’ and
let S be a finite symmetric subset of G containing w and the generators of
H1 and Hz.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (<=).

Let Hi, H» < G be finitely generated subgroups and w ¢ Hy H2. Consider
the graph M’ := G/H, U G/Ha, where (gHi, g’ H2) iff gH1 N ¢'Ha # @, and
let 3 : G ~ M’ by left-multiplication. Let M := {H:, Ho, wH2} < M’ and
let S be a finite symmetric subset of G containing w and the generators of
H;, and H>. Then the partial action ¢ : G — Part(M) induced from p and
S extends to an action ¢ : G ~ N on some finite graph N > M.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (<=).

Let Hi, H» < G be finitely generated subgroups and w ¢ Hy H2. Consider
the graph M’ := G/H, U G/Ha, where (gHi, g’ H2) iff gH1 N ¢'Ha # @, and
let 3 : G ~ M’ by left-multiplication. Let M := {H:, Ho, wH2} < M’ and
let S be a finite symmetric subset of G containing w and the generators of
H;, and H>. Then the partial action ¢ : G — Part(M) induced from p and
S extends to an action ¢ : G ~ N on some finite graph N > M.

For i =1,2, let K; := Staby(H;) <5 G. Then H; < Kj, since if h € H;,

Y(h)(H;) = p(s1--- 81)(H;) = (p(s1) 0 - - - 0 p(s1))(H;) = H;

where h = s; - - - s, for some s; € H.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (<=).
Let Hi, H» < G be finitely generated subgroups and w ¢ Hy H2. Consider
the graph M’ := G/H, U G/Ha, where (gHi, g’ H2) iff gH1 N ¢'Ha # @, and
let 3 : G ~ M’ by left-multiplication. Let M := {H:, Ho, wH2} < M’ and
let S be a finite symmetric subset of G containing w and the generators of
H;, and H>. Then the partial action ¢ : G — Part(M) induced from p and
S extends to an action ¢ : G ~ N on some finite graph N > M.

For i =1,2, let K; := Staby(H;) <5 G. Then H; < Kj, since if h € H;,

Y(h)(H) = p(s1--- 1) (Hi) = (p(s1) o -~ o p(s1)) (Hi) = H;
where h = s1 - - - 5 for some s; € H. Finally, w € K1 K> since if w = kikz, we
have wk; ' = k1, so ¢(wk; ') (H1) = ¢(ki)(H1) = Hi and

b(wky ") (Hz) = (w)(Hz) = p(w)(Ha) = p(w)(Hz) = wha.
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EPPA for graphs

Theorem (Coulbois 2001)
A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (<=).
Let Hi, H» < G be finitely generated subgroups and w ¢ Hy H2. Consider
the graph M’ := G/H, U G/Ha, where (gHi, g’ H2) iff gH1 N ¢'Ha # @, and
let 3 : G ~ M’ by left-multiplication. Let M := {H:, Ho, wH2} < M’ and
let S be a finite symmetric subset of G containing w and the generators of
H;, and H>. Then the partial action ¢ : G — Part(M) induced from p and
S extends to an action ¢ : G ~ N on some finite graph N > M.
For i =1,2, let K; := Staby(H;) <5 G. Then H; < Kj, since if h € H;,
P(h)(Hi) = @(s1- - 1) (Hi) = (#(s1) 0 -+ - 0 (1)) (Hs) = Hi
where h = s1 - - - 5 for some s; € H. Finally, w € K1 K> since if w = kikz, we
have wk; ' = k1, so ¢(wk; ') (H1) = ¢(ki)(H1) = Hi and
b(wk; ") (Hz) = ¢(w)(Hz) = p(w)(Hz) = p(w)(Hz) = wHo.
But then M |= (Hi, wHs), so Hy N wHy # &, and hence w € Hi Ha. [ |
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The Ribes-Zalesskii Theorem for pro-V topologies

Theorem (Ribes-Zalesskil 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F
be a free group. If Hi,..., H, are finitely generated subgroups of F which

are closed in the pro-V topology of F, then their product H; - - - H, is also
closed in the pro-V topology of F.
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The Ribes-Zalesskii Theorem for pro-V topologies

Theorem (Ribes-Zalesskil 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F
be a free group. If Hi,..., H, are finitely generated subgroups of F which

are closed in the pro-V topology of F, then their product H; - - - H, is also
closed in the pro-V topology of F.

I will present a proof due to Auinger and Steinberg (2005).
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Proof of the Ribes-Zalesskil Theorem

Let Hi,..., H, < F be finitely generated subgroups which are closed in the
pro-V topology of F. We seek, for each word w € F, a group K € V such
that if [w]K c [Hl'HHn]K, then we Hy---H,. Let F = Fx.
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Proof of the Ribes-Zalesskil Theorem

Let Hi,..., H, < F be finitely generated subgroups which are closed in the
pro-V topology of F. We seek, for each word w € F, a group K € V such
that if [w]K c [Hl'HHn]K, then we Hy---H,. Let F = Fx.

Motivated by the proof of Hall’s Theorem, consider the group G of deck
transformations of expansions of the Stallings’ graphs I'; := (S(H;), v;) for
1<i<nand Iy :=(S(Hn)w, v):

G={((f,....f:x€X)< G XX Gn.
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Proof of the Ribes-Zalesskil Theorem

Lemma

If H < F is finitely generated and closed in the pro-V topology of F, then
there is an expansion of its Stallings’ graph such that Aut(S(H)") € V.

Thus G € V.
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Proof of the Ribes-Zalesskil Theorem

Lemma

If H < F is finitely generated and closed in the pro-V topology of F, then
there is an expansion of its Stallings’ graph such that Aut(S(H)") € V.

Thus G € V. But G is not ‘strong enough’, i.e., if [w]g € [Hi - -- Hy]g, then
it is not necessarily true that w € Hy --- H,.
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Proof of the Ribes-Zalesskil Theorem

Lemma

If H < F is finitely generated and closed in the pro-V topology of F, then
there is an expansion of its Stallings’ graph such that Aut(S(H)") € V.

Thus G € V. But G is not ‘strong enough’, i.e., if [w]g € [Hi - -- Hy]g, then
it is not necessarily true that w € Hy --- H,.

Let us see why. To show w € Hj - - - Hy, it suffices to construct paths 7;
inT; for 1 < ¢ < n such that [y1---ya]r =1 and:
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Proof of the Ribes-Zalesskil Theorem

Lemma

If H < F is finitely generated and closed in the pro-V topology of F, then
there is an expansion of its Stallings’ graph such that Aut(S(H)") € V.

Thus G € V. But G is not ‘strong enough’, i.e., if [w]g € [Hi - -- Hy]g, then
it is not necessarily true that w € Hy --- H,.

Let us see why. To show w € Hj - - - Hy, it suffices to construct paths 7;
inT; for 1 < ¢ < n such that [y1---ya]r =1 and:

Paths v1,...,vs such that [y1 - -yn]c = 1 are easy to obtain by since we
assume [w|g € [Hi - - Hy]g; the issue is that we need [y1---yn]r = 1.
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Proof of the Ribes-Zalesskil Theorem

The issue is that although [v1 - - - yn]¢ = 1, the paths that it traces out in
the Cayley graph C(G) of G bounds a non-homotopically trivial loop.

\
/ Bad / Good
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Proof of the Ribes-Zalesskil Theorem

The issue is that although [v1 - - - yn]¢ = 1, the paths that it traces out in
the Cayley graph C(G) of G bounds a non-homotopically trivial loop.

\
/ Bad / Good |
|
I
I
|
|
|

Lets strengthen the power of G to also keep track of how many times an
edge is traversed, and not just the endpoint!
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Proof of the Ribes-Zalesskil Theorem

Fix a prime p and let ET be the set of positively-oriented edges in the
Cayley graph of G. Let C,E" := (Z/pZ)®F" and let

GAP®) = ((ez,z) 1z € X) < CoET x G,
where e, € E* is the edge (1, 7).
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Proof of the Ribes-Zalesskil Theorem

Fix a prime p and let ET be the set of positively-oriented edges in the
Cayley graph of G. Let C,E" := (Z/pZ)®F" and let

GAP®) = ((ez,z) 1z € X) < CoET x G,

where e, € E* is the edge (1,z). There is a natural map F — G — GAP®)
and for any w € F, we have

loavin = (32 _,, [w(@)lpe, [u])

where [w(e)]p == w(e) mod p and w(e) is the number of signed traversals of
e € ET by w.
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Proof of the Ribes-Zalesskil Theorem

Fix a prime p and let ET be the set of positively-oriented edges in the
Cayley graph of G. Let C,E" := (Z/pZ)®F" and let

GAP®) = ((ez,z) 1z € X) < CoET x G,

where e, € E* is the edge (1,z). There is a natural map F — G — GAP®)
and for any w € F, we have

loavin = (32 _,, [w(@)lpe, [u])

where [w(e)]p == w(e) mod p and w(e) is the number of signed traversals of
e € ET by w.

GAP®) not only computes the image [w]e of a word w € F, but also ‘keeps
track’ of the edges that w traces out in the Cayley graph of G.
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Proof of the Ribes-Zalesskil Theorem

Fix a prime p and let ET be the set of positively-oriented edges in the
Cayley graph of G. Let C,E" := (Z/pZ)®F" and let

GAP®) = ((e,,z): z € X) < C,ET x G,

where e, € E* is the edge (1,z). There is a natural map F — G — GAP®)
and for any w € F, we have

wloavn = (32, [w(e)le, ulc)

where [w(e)]p == w(e) mod p and w(e) is the number of signed traversals of
e € ET by w.

GAP®) not only computes the image [w]e of a word w € F, but also ‘keeps
track’ of the edges that w traces out in the Cayley graph of G.

Lemma

For any group G € V, there is a prime p such that GAP®) eV,
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Proof of the Ribes-Zalesskil Theorem

We claim that K := G*P® for appropriate p works when n = 2; the general
case requires an iterated extension and a (painful but easy) induction.
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Proof of the Ribes-Zalesskil Theorem

We claim that K := G*P® for appropriate p works when n = 2; the general
case requires an iterated extension and a (painful but easy) induction.

Indeed, if [w]x € [H1H2]k, then there exist paths v; in T, for i = 1,2,
such that [y;v4]x = 1 as before; in particular, [y;v5]¢ = 1.
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Proof of the Ribes-Zalesskil Theorem

We claim that K := G*P® for appropriate p works when n = 2; the general
case requires an iterated extension and a (painful but easy) induction.

Indeed, if [w]x € [H1H2]k, then there exist paths v; in T, for i = 1,2,
such that [y;v5]x = 1 as before; in particular, [y;v5]¢ = 1. Tracing these
paths out in the Cayley graph of G gives the following picture.

/ N ,/ . \
: Bad hﬂG : : Good hﬂc :
! l ! 1
o | o |
! e | ! |
| 2 | | |
| ’ 1 s s 1
| |
L1 (@), L1 C(G)
|
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Thank you!

[AS05]
[Cou01]

[HLOO]

[Hal49]
[RZ93]

[Stag83]
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