Extension properties and separability of groups

A connection between model theory and profinite topologies

Zhaoshen Zhai

McGill University

September 23, 2025

Contents

- 1 Introduction
- Subgroup separability and EPPA for sets
- 3 Product separability and EPPA for structures
- 4 V-separability and the Ribes-Zalesskiĭ Theorem

Contents

- Introduction
- Subgroup separability and EPPA for set
- 3 Product separability and EPPA for structures
- 4 V-separability and the Ribes-Zalesskiĭ Theorem

Definition

The *profinite topology* on a group G is given by taking as the neighborhood basis around the identity all normal subgroups of G of finite index.

Definition

The profinite topology on a group G is given by taking as the neighborhood basis around the identity all normal subgroups of G of finite index.

A group G is subgroup separable if all finitely generated subgroups of G are closed in its profinite topology.

Definition

The profinite topology on a group G is given by taking as the neighborhood basis around the identity all normal subgroups of G of finite index.

A group G is subgroup separable if all finitely generated subgroups of Gare closed in its profinite topology.

Note that subgroup $H \leq G$ is closed iff for each $q \notin H$, there is a finite group K and a morphism $\pi: G \to K$ such that $\pi(g) \notin \pi(H)$.

Definition

The profinite topology on a group G is given by taking as the neighborhood basis around the identity all normal subgroups of G of finite index.

A group G is subgroup separable if all finitely generated subgroups of G are closed in its profinite topology.

Note that subgroup $H \leq G$ is closed iff for each $g \notin H$, there is a finite group K and a morphism $\pi: G \to K$ such that $\pi(g) \notin \pi(H)$.

Theorem (Hall 1949)

Free groups are subgroup separable.

Definition

The profinite topology on a group G is given by taking as the neighborhood basis around the identity all normal subgroups of G of finite index.

A group G is subgroup separable if all finitely generated subgroups of G are closed in its profinite topology.

Note that subgroup $H \leq G$ is closed iff for each $g \notin H$, there is a finite group K and a morphism $\pi: G \to K$ such that $\pi(g) \notin \pi(H)$.

Theorem (Hall 1949)

Free groups are subgroup separable.

Theorem (Ribes-Zalesskiĭ 1993)

Free groups are 2-product separable: the product H_1H_2 of any two finitely generated subgroups $H_1, H_2 \leq F$ is closed in the profinite topology of F.

Extension property for partial automorphisms

Throughout, structures are L-structures for a finite relational language L.

Definition (Herwig-Lascar 2000)

A class \mathcal{C} of structures has the extension property for partial automorphisms (EPPA) if for each $M, M' \in \mathcal{C}$, with M finite and $M \leq M'$, and for each collection p_1, \ldots, p_n of partial automorphisms of M extending to (total) automorphisms of M', there is a finite structure $N \in \mathcal{C}$ containing M as a substructure such that p_1, \ldots, p_n extend to automorphisms of N.

Extension property for partial automorphisms

Throughout, structures are L-structures for a finite relational language L.

Definition (Herwig-Lascar 2000)

A class C of structures has the extension property for partial automorphisms (EPPA) if for each $M, M' \in \mathcal{C}$, with M finite and M < M', and for each collection p_1, \ldots, p_n of partial automorphisms of M extending to (total) automorphisms of M', there is a finite structure $N \in \mathcal{C}$ containing M as a substructure such that p_1, \ldots, p_n extend to automorphisms of N.

Note that the class of all sets has the EPPA.

Extension property for partial automorphisms

Throughout, structures are L-structures for a finite relational language L.

Definition (Herwig-Lascar 2000)

A class C of structures has the extension property for partial automorphisms (EPPA) if for each $M, M' \in \mathcal{C}$, with M finite and M < M', and for each collection p_1, \ldots, p_n of partial automorphisms of M extending to (total) automorphisms of M', there is a finite structure $N \in \mathcal{C}$ containing M as a substructure such that p_1, \ldots, p_n extend to automorphisms of N.

Note that the class of all sets has the EPPA.

Theorem (Hrushovski 1991)

The class of all graphs has the EPPA.

Extensions of partial group actions

Definition (Coulbois 2001)

Let $M \in \mathcal{C}$ be a finite structure. A map $\varphi : G \to \operatorname{Part}(M)$ is a partial action if there is a finite symmetric subset $S \subseteq G$, an extension $M \leq M' \in \mathcal{C}$, and an action $\overline{\varphi} : G \to \operatorname{Aut}(M')$, such that for all $g \in G$ and $m_1, m_2 \in M$:

$$\varphi(g)(m_1) = m_2 \quad \Leftrightarrow \quad g = s_1 \cdots s_l \text{ and } (\varphi(s_1) \circ \cdots \circ \varphi(s_l)) m_1 = m_2,$$

and $\varphi(s) = \overline{\varphi}(s)|M$ for all $s \in S$.

Extensions of partial group actions

Definition (Coulbois 2001)

Let $M \in \mathcal{C}$ be a finite structure. A map $\varphi : G \to \operatorname{Part}(M)$ is a partial action if there is a finite symmetric subset $S \subseteq G$, an extension $M \leq M' \in \mathcal{C}$, and an action $\overline{\varphi} : G \to \operatorname{Aut}(M')$, such that for all $g \in G$ and $m_1, m_2 \in M$:

$$\varphi(g)(m_1) = m_2 \quad \Leftrightarrow \quad g = s_1 \cdots s_l \text{ and } (\varphi(s_1) \circ \cdots \circ \varphi(s_l)) m_1 = m_2,$$
 and $\varphi(s) = \overline{\varphi}(s) | M \text{ for all } s \in S.$

Definition

A group G is said to have the extension property for C if for each finite $M \in C$ and each partial action $\varphi : G \to \operatorname{Part}(M)$, there is a finite structure $N \in C$ containing M and an action $\widetilde{\varphi} : G \to \operatorname{Aut}(N)$ extending φ .

Extensions of partial group actions

Definition (Coulbois 2001)

Let $M \in \mathcal{C}$ be a finite structure. A map $\varphi : G \to \operatorname{Part}(M)$ is a partial action if there is a finite symmetric subset $S \subseteq G$, an extension $M \leq M' \in \mathcal{C}$, and an action $\overline{\varphi} : G \to \operatorname{Aut}(M')$, such that for all $g \in G$ and $m_1, m_2 \in M$:

$$\varphi(g)(m_1) = m_2 \quad \Leftrightarrow \quad g = s_1 \cdots s_l \text{ and } (\varphi(s_1) \circ \cdots \circ \varphi(s_l)) m_1 = m_2,$$

and $\varphi(s) = \overline{\varphi}(s) | M \text{ for all } s \in S.$

Definition

A group G is said to have the extension property for C if for each finite $M \in C$ and each partial action $\varphi : G \to \operatorname{Part}(M)$, there is a finite structure $N \in C$ containing M and an action $\widetilde{\varphi} : G \to \operatorname{Aut}(N)$ extending φ .

Note that \mathcal{C} has the EPPA \Leftrightarrow all finitely generated free groups have the extension property for \mathcal{C} .

Connections between extension properties and separability

Theorem (Gitik 1997)

A group is subgroup separable iff it has the extension property for sets.

Connections between extension properties and separability

Theorem (Gitik 1997)

A group is subgroup separable iff it has the extension property for sets.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Product separability

Connections between extension properties and separability

Theorem (Gitik 1997)

A group is subgroup separable iff it has the extension property for sets.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Theorem (Herwig-Lascar 2000; Coulbois 2001)

A group is n-product separable iff it has the extension property for n-cycle free n-partitioned structures.

We've seen how the profinite topology on a group encodes its separability properties with respect to finite quotients. Sometimes, however, we need to control the *order* of these finite quotients, or maybe even more information.

We've seen how the profinite topology on a group encodes its separability properties with respect to finite quotients. Sometimes, however, we need to control the *order* of these finite quotients, or maybe even more information.

Definition

A pseudovariety of groups is a class ${f V}$ of finite groups that is closed under subgroups, quotients, and finite direct products.

We've seen how the profinite topology on a group encodes its separability properties with respect to finite quotients. Sometimes, however, we need to control the *order* of these finite quotients, or maybe even more information.

Definition

A pseudovariety of groups is a class ${f V}$ of finite groups that is closed under subgroups, quotients, and finite direct products.

We say that a pseudovariety **V** is closed under extensions if $G \in \mathbf{V}$ whenever $N, G/N \in \mathbf{V}$ for any normal subgroup $N \subseteq G$.

We've seen how the profinite topology on a group encodes its separability properties with respect to finite quotients. Sometimes, however, we need to control the *order* of these finite quotients, or maybe even more information.

Definition

A pseudovariety of groups is a class ${f V}$ of finite groups that is closed under subgroups, quotients, and finite direct products.

We say that a pseudovariety **V** is closed under extensions if $G \in \mathbf{V}$ whenever $N, G/N \in \mathbf{V}$ for any normal subgroup $N \subseteq G$.

Definition

The pro-V topology on a group G is given by taking as the neighborhood basis around the identity all normal subgroups $N \subseteq G$ such that $G/N \in \mathbf{V}$.

Finitely generated subgroups of F need not be closed in its pro-V topology!

Finitely generated subgroups of F need not be closed in its pro-V topology!

Conjecture (Herwig-Lascar 2000)

Let $H \leq F$ be finitely generated. Then the following are equivalent.

- 1. H is closed in the pro-odd topology (where V = odd-order finite groups).
- 2. For all $w \in F$, if $w^2 \in H$, then $w \in H$.

Finitely generated subgroups of F need not be closed in its pro- \mathbf{V} topology!

Conjecture (Herwig-Lascar 2000)

Let $H \leq F$ be finitely generated. Then the following are equivalent.

- 1. H is closed in the pro-odd topology (where V = odd-order finite groups).
- 2. For all $w \in F$, if $w^2 \in H$, then $w \in H$.

Theorem (Herwig-Lascar 2000)

The above conjecture is equivalent to the EPPA of the class of tournaments.

Finitely generated subgroups of F need not be closed in its pro- \mathbf{V} topology!

Conjecture (Herwig-Lascar 2000)

Let $H \leq F$ be finitely generated. Then the following are equivalent.

- 1. H is closed in the pro-odd topology (where V = odd-order finite groups).
- 2. For all $w \in F$, if $w^2 \in H$, then $w \in H$.

Theorem (Herwig-Lascar 2000)

The above conjecture is equivalent to the EPPA of the class of tournaments.

The proof uses a strengthening of the Ribes-Zalesskiĭ theorem (free groups are product separable) to pro-V topologies:

Theorem (Ribes-Zalesskiĭ 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F be a free group. If H_1, \ldots, H_n are finitely generated subgroups of F which are closed in the pro-V topology of F, then their product $H_1 \cdots H_n$ is also closed in the pro-V topology of F.

Theorem (Ribes-Zalesskiĭ 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F be a free group. If H_1, \ldots, H_n are finitely generated subgroups of F which are closed in the pro-V topology of F, then their product $H_1 \cdots H_n$ is also closed in the pro-V topology of F.

We thus say that free groups are product separable relative to V.

Theorem (Ribes-Zalesskiĭ 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F be a free group. If H_1, \ldots, H_n are finitely generated subgroups of F which are closed in the pro-V topology of F, then their product $H_1 \cdots H_n$ is also closed in the pro-V topology of F.

We thus say that free groups are product separable relative to V.

Question

Is there a natural class of structures C for which a group G is n-product separable relative to \mathbf{V} iff G has the extension property for C?

Theorem (Ribes-Zalesskiĭ 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F be a free group. If H_1, \ldots, H_n are finitely generated subgroups of F which are closed in the pro-V topology of F, then their product $H_1 \cdots H_n$ is also closed in the pro-V topology of F.

We thus say that free groups are product separable relative to V.

Question

Is there a natural class of structures $\mathcal C$ for which a group G is n-product separable relative to $\mathbf V$ iff G has the extension property for $\mathcal C$?

Conjecture

A group G is 2-product separable relative to $\mathbf V$ iff every partial action φ of G on a finite graph M with closed stabilizers extends to an action $\widetilde{\varphi}$ of G on a finite graph $N \geq M$ such that $\widetilde{\varphi}(G)$ is a pro- $\mathbf V$ group.

Contents

- Introduction
- 2 Subgroup separability and EPPA for sets
- 3 Product separability and EPPA for structures
- 4 V-separability and the Ribes-Zalesskii Theorem

Hall's Theorem

Theorem (Hall 1949)

 $Free\ groups\ are\ subgroup\ separable.$

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

1. We associate to H its Stallings' graph S(H), which is a finite graph with fundamental group H that expands to a covering of the rose.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

1. We associate to H its Stallings' graph $\mathcal{S}(H)$, which is a finite graph with fundamental group H that expands to a covering of the rose.

Figure: Construction of S(H), where $H := \langle xyx^{-1}y^{-1}, yxy^{-1} \rangle$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

1. We associate to H its Stallings' graph S(H), which is a finite graph with fundamental group H that expands to a covering of the rose.

Figure: Construction of S(H), where $H := \langle xyx^{-1}y^{-1}, yxy^{-1} \rangle$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

1. We associate to H its Stallings' graph S(H), which is a finite graph with fundamental group H that expands to a covering of the rose.

Figure: Construction of S(H), where $H := \langle xyx^{-1}y^{-1}, yxy^{-1} \rangle$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

1. We associate to H its Stallings' graph S(H), which is a finite graph with fundamental group H that expands to a covering of the rose.

Figure: Construction of S(H), where $H := \langle xyx^{-1}y^{-1}, yxy^{-1} \rangle$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

1. We associate to H its Stallings' $graph \mathcal{S}(H)$, which is a finite graph with fundamental group H that expands to a covering of the rose.

Figure: Construction of S(H), where $H := \langle xyx^{-1}y^{-1}, yxy^{-1} \rangle$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

1. We associate to H its Stallings' graph S(H), which is a finite graph with fundamental group H that expands to a covering of the rose.

Figure: Construction of S(H), where $H := \langle xyx^{-1}y^{-1}, yxy^{-1} \rangle$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

- 1. We associate to H its $Stallings' graph \mathcal{S}(H)$, which is a finite graph with fundamental group H that expands to a covering of the rose.
- 2. Let $S(H)_w$ be obtained by attaching to S(H) a path labelled w to the distinguished vertex, and then folded. Note that $\pi_1(S(H)_w) = H$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

- 1. We associate to H its $Stallings' graph \mathcal{S}(H)$, which is a finite graph with fundamental group H that expands to a covering of the rose.
- 2. Let $S(H)_w$ be obtained by attaching to S(H) a path labelled w to the distinguished vertex, and then folded. Note that $\pi_1(S(H)_w) = H$.

Figure: Construction of $\mathcal{S}(H)_w$, where $H\coloneqq \langle xyx^{-1}y^{-1},y^2\rangle$ and $w\coloneqq xyx^{-1}$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

- 1. We associate to H its $Stallings' graph \mathcal{S}(H)$, which is a finite graph with fundamental group H that expands to a covering of the rose.
- 2. Let $S(H)_w$ be obtained by attaching to S(H) a path labelled w to the distinguished vertex, and then folded. Note that $\pi_1(S(H)_w) = H$.

Figure: Construction of $\mathcal{S}(H)_w$, where $H \coloneqq \langle xyx^{-1}y^{-1}, y^2 \rangle$ and $w \coloneqq xyx^{-1}$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

- 1. We associate to H its Stallings' graph S(H), which is a finite graph with fundamental group H that expands to a covering of the rose.
- 2. Let $S(H)_w$ be obtained by attaching to S(H) a path labelled w to the distinguished vertex, and then folded. Note that $\pi_1(S(H)_w) = H$.

Figure: Construction of $\mathcal{S}(H)_w$, where $H\coloneqq \langle xyx^{-1}y^{-1},y^2\rangle$ and $w\coloneqq xyx^{-1}$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

- 1. We associate to H its $Stallings' graph \mathcal{S}(H)$, which is a finite graph with fundamental group H that expands to a covering of the rose.
- 2. Let $S(H)_w$ be obtained by attaching to S(H) a path labelled w to the distinguished vertex, and then folded. Note that $\pi_1(S(H)_w) = H$.

Figure: Construction of $S(H)_w$, where $H := \langle xyx^{-1}y^{-1}, y^2 \rangle$ and $w := xyx^{-1}$.

Let $H \leq F$ be a finitely generated subgroup and let $w \in F \setminus H$.

- 1. We associate to H its Stallings' graph S(H), which is a finite graph with fundamental group H that expands to a covering of the rose.
- 2. Let $S(H)_w$ be obtained by attaching to S(H) a path labelled w to the distinguished vertex, and then folded. Note that $\pi_1(S(H)_w) = H$.
- 3. Expand $S(H)_w$ to a cover of the rose. The deck transformation induced by w is nontrivial, so w is separated from H in the quotient.

Figure: Expanding $S(H)_w$ to a cover of the rose.

Clearly, the class of all sets has the EPPA.

Clearly, the class of all sets has the EPPA. This implies Hall's Theorem, since if $H \leq F$ is finitely generated and $w \not\in H$, then the collection

 $M := \{xH : x \text{ is a subword of } w \text{ or of a generator in } H\}$

is a finite subset of M' := F/H,

14/25

Clearly, the class of all sets has the EPPA. This implies Hall's Theorem, since if $H \leq F$ is finitely generated and $w \notin H$, then the collection

 $M := \{xH : x \text{ is a subword of } w \text{ or of a generator in } H\}$

is a finite subset of M' := F/H, and left-multiplication of F on M' induces a collection of partial isomorphisms of M extending to total isomorphisms of some finite $N \supseteq M$;

Clearly, the class of all sets has the EPPA. This implies Hall's Theorem, since if $H \leq F$ is finitely generated and $w \not\in H$, then the collection

 $M := \{xH : x \text{ is a subword of } w \text{ or of a generator in } H\}$

is a finite subset of M' := F/H, and left-multiplication of F on M' induces a collection of partial isomorphisms of M extending to total isomorphisms of some finite $N \supseteq M$; the map $\pi : F \twoheadrightarrow \operatorname{Aut}(N)$ then separates w from H.

Clearly, the class of all sets has the EPPA. This implies Hall's Theorem, since if $H \leq F$ is finitely generated and $w \notin H$, then the collection

 $M := \{xH : x \text{ is a subword of } w \text{ or of a generator in } H\}$

is a finite subset of M' := F/H, and left-multiplication of F on M' induces a collection of partial isomorphisms of M extending to total isomorphisms of some finite $N \supseteq M$; the map $\pi : F \twoheadrightarrow \operatorname{Aut}(N)$ then separates w from H.

Theorem (Gitik 1997)

A group is subgroup separable iff it has the extension property for sets.

Contents

- 1 Introduction
- Subgroup separability and EPPA for sets
- 3 Product separability and EPPA for structures
- 4 V-separability and the Ribes-Zalesskii Theorem

Subgroup separability

Theorem (Ribes-Zalesskiĭ 1993)

Free groups are product separable.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Rightarrow) .

Let $\varphi: G \to \operatorname{Part}(M)$ be a partial action, let $[c_1], \ldots, [c_m]$ be its orbits, and let $H_i := \operatorname{Stab}_{\varphi}(c_i)$.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Rightarrow) .

Let $\varphi: G \to \operatorname{Part}(M)$ be a partial action, let $[c_1], \ldots, [c_m]$ be its orbits, and let $H_i := \operatorname{Stab}_{\varphi}(c_i)$. If $H_i \leq_f G$, try $M \hookrightarrow N := \bigsqcup_i G/H_i$ via $a \mapsto \sigma(a)H_i$, where $\sigma: M \to G$ is such that $\varphi(\sigma(a))(c_i) = a$, and define $N \models (a', b')$ iff there exist $a, b \in M$ and $g \in G$ such that ga = a', gb = b', and $M \models (a, b)$.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Rightarrow) .

Let $\varphi: G \to \operatorname{Part}(M)$ be a partial action, let $[c_1], \ldots, [c_m]$ be its orbits, and let $H_i := \operatorname{Stab}_{\varphi}(c_i)$. If $H_i \leq_{f_i} G$, try $M \hookrightarrow N := \bigsqcup_i G/H_i$ via $a \mapsto \sigma(a)H_i$, where $\sigma: M \to G$ is such that $\varphi(\sigma(a))(c_i) = a$, and define $N \models (a', b')$ iff there exist $a, b \in M$ and $g \in G$ such that ga = a', gb = b', and $M \models (a, b)$.

1. Let $a, a' \in [c_i]$. If $a \neq a'$, then $\sigma(a)H_i \neq \sigma(a')H_i$.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Rightarrow) .

Let $\varphi: G \to \operatorname{Part}(M)$ be a partial action, let $[c_1], \ldots, [c_m]$ be its orbits, and let $H_i := \operatorname{Stab}_{\varphi}(c_i)$. If $H_i \leq_f G$, try $M \hookrightarrow N := \bigsqcup_i G/H_i$ via $a \mapsto \sigma(a)H_i$, where $\sigma: M \to G$ is such that $\varphi(\sigma(a))(c_i) = a$, and define $N \models (a', b')$ iff there exist $a, b \in M$ and $g \in G$ such that ga = a', gb = b', and $M \models (a, b)$.

- 1. Let $a, a' \in [c_i]$. If $a \neq a'$, then $\sigma(a)H_i \neq \sigma(a')H_i$.
- 2. Let $a, a' \in [c_i]$ and $b, b' \in [c_j]$. If $M \models (a, b)$ and $M \not\models (a', b')$, then $\sigma(a')H_i\sigma(a)^{-1} \neq \sigma(b')H_j\sigma(b)^{-1}$.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Rightarrow) .

Let $\varphi: G \to \operatorname{Part}(M)$ be a partial action, let $[c_1], \ldots, [c_m]$ be its orbits, and let $H_i := \operatorname{Stab}_{\varphi}(c_i)$. If $H_i \leq_f G$, try $M \hookrightarrow N := \bigsqcup_i G/H_i$ via $a \mapsto \sigma(a)H_i$, where $\sigma: M \to G$ is such that $\varphi(\sigma(a))(c_i) = a$, and define $N \models (a', b')$ iff there exist $a, b \in M$ and $g \in G$ such that ga = a', gb = b', and $M \models (a, b)$.

- 1. Let $a, a' \in [c_i]$. If $a \neq a'$, then $\sigma(a)H_i \neq \sigma(a')H_i$.
- 2. Let $a, a' \in [c_i]$ and $b, b' \in [c_j]$. If $M \models (a, b)$ and $M \not\models (a', b')$, then $\sigma(a')H_i\sigma(a)^{-1} \neq \sigma(b')H_j\sigma(b)^{-1}$.

In general, we let $N := \bigsqcup_i G/K_i$, where $H_i \leq K_i \leq_{fi} G$ are obtained from 2-product separability of G and satisfy (1) and (2) for all a, a', b, b' above.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Rightarrow) .

Let $\varphi: G \to \operatorname{Part}(M)$ be a partial action, let $[c_1], \ldots, [c_m]$ be its orbits, and let $H_i := \operatorname{Stab}_{\varphi}(c_i)$. If $H_i \leq_f G$, try $M \hookrightarrow N := \bigsqcup_i G/H_i$ via $a \mapsto \sigma(a)H_i$, where $\sigma: M \to G$ is such that $\varphi(\sigma(a))(c_i) = a$, and define $N \models (a', b')$ iff there exist $a, b \in M$ and $g \in G$ such that ga = a', gb = b', and $M \models (a, b)$.

- 1. Let $a, a' \in [c_i]$. If $a \neq a'$, then $\sigma(a)H_i \neq \sigma(a')H_i$.
- 2. Let $a, a' \in [c_i]$ and $b, b' \in [c_j]$. If $M \models (a, b)$ and $M \not\models (a', b')$, then $\sigma(a')H_i\sigma(a)^{-1} \neq \sigma(b')H_j\sigma(b)^{-1}$.

In general, we let $N := \bigsqcup_i G/K_i$, where $H_i \leq K_i \leq_{fi} G$ are obtained from 2-product separability of G and satisfy (1) and (2) for all a, a', b, b' above. Note that M is finite, so these K_i 's can be obtained uniformly.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Leftarrow) .

Let $H_1, H_2 \leq G$ be finitely generated subgroups and $w \notin H_1H_2$.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Leftarrow) .

Let $H_1, H_2 \leq G$ be finitely generated subgroups and $w \notin H_1H_2$. Consider the graph $M' := G/H_1 \sqcup G/H_2$, where $(gH_1, g'H_2)$ iff $gH_1 \cap g'H_2 \neq \emptyset$, and let $\overline{\varphi} : G \curvearrowright M'$ by left-multiplication.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Leftarrow) .

Let $H_1, H_2 \leq G$ be finitely generated subgroups and $w \notin H_1H_2$. Consider the graph $M' := G/H_1 \sqcup G/H_2$, where $(gH_1, g'H_2)$ iff $gH_1 \cap g'H_2 \neq \emptyset$, and let $\overline{\varphi} : G \cap M'$ by left-multiplication. Let $M := \{H_1, H_2, wH_2\} \leq M'$ and let S be a finite symmetric subset of S containing S and the generators of S and S and S and S are S are S and S are S and S are S and S are S and S are S are S and S are S are S and S are S and S are S are S and S are S are S and S are S

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Leftarrow) .

Let $H_1, H_2 \leq G$ be finitely generated subgroups and $w \notin H_1H_2$. Consider the graph $M' := G/H_1 \sqcup G/H_2$, where $(gH_1, g'H_2)$ iff $gH_1 \cap g'H_2 \neq \varnothing$, and let $\overline{\varphi} : G \curvearrowright M'$ by left-multiplication. Let $M := \{H_1, H_2, wH_2\} \leq M'$ and let S be a finite symmetric subset of S containing S and the generators of S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on S on some finite graph S and S extends to an action S on S on

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Leftarrow) .

Let $H_1, H_2 \leq G$ be finitely generated subgroups and $w \notin H_1H_2$. Consider the graph $M' \coloneqq G/H_1 \sqcup G/H_2$, where $(gH_1, g'H_2)$ iff $gH_1 \cap g'H_2 \neq \varnothing$, and let $\overline{\varphi} : G \curvearrowright M'$ by left-multiplication. Let $M \coloneqq \{H_1, H_2, wH_2\} \leq M'$ and let S be a finite symmetric subset of S containing S and the generators of S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S of S and S extends to an action S of S and S extends to an action S on S on S on S and S extends to an action S of S and S extends to S on S on S and S extends to S and S extends to

For
$$i = 1, 2$$
, let $K_i := \operatorname{Stab}_{\psi}(H_i) \leq_f G$. Then $H_i \leq K_i$, since if $h \in H_i$,

$$\psi(h)(H_i) = \varphi(s_1 \cdots s_l)(H_i) = (\overline{\varphi}(s_1) \circ \cdots \circ \overline{\varphi}(s_l))(H_i) = H_i$$

where $h = s_1 \cdots s_l$ for some $s_j \in H$.

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Leftarrow) .

Let $H_1, H_2 \leq G$ be finitely generated subgroups and $w \notin H_1H_2$. Consider the graph $M' \coloneqq G/H_1 \sqcup G/H_2$, where $(gH_1, g'H_2)$ iff $gH_1 \cap g'H_2 \neq \varnothing$, and let $\overline{\varphi} : G \curvearrowright M'$ by left-multiplication. Let $M \coloneqq \{H_1, H_2, wH_2\} \leq M'$ and let S be a finite symmetric subset of S containing S and the generators of S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S on some finite graph S and S extends to an action S of S and S extends to an action S on S o

For
$$i = 1, 2$$
, let $K_i := \operatorname{Stab}_{\psi}(H_i) \leq_{fi} G$. Then $H_i \leq K_i$, since if $h \in H_i$,

$$\psi(h)(H_i) = \varphi(s_1 \cdots s_l)(H_i) = (\overline{\varphi}(s_1) \circ \cdots \circ \overline{\varphi}(s_l))(H_i) = H_i$$

where $h = s_1 \cdots s_l$ for some $s_j \in H$. Finally, $w \notin K_1 K_2$ since if $w = k_1 k_2$, we have $wk_2^{-1} = k_1$, so $\psi(wk_2^{-1})(H_1) = \psi(k_1)(H_1) = H_1$ and

$$\psi(wk_2^{-1})(H_2) = \psi(w)(H_2) = \varphi(w)(H_2) = \overline{\varphi}(w)(H_2) = wH_2.$$

Theorem (Coulbois 2001)

A group is 2-product separable iff it has the extension property for graphs.

Proof sketch of (\Leftarrow) .

Let $H_1, H_2 \leq G$ be finitely generated subgroups and $w \notin H_1H_2$. Consider the graph $M' := G/H_1 \sqcup G/H_2$, where $(qH_1, q'H_2)$ iff $qH_1 \cap q'H_2 \neq \emptyset$, and let $\overline{\varphi}: G \cap M'$ by left-multiplication. Let $M := \{H_1, H_2, wH_2\} < M'$ and let S be a finite symmetric subset of G containing w and the generators of H_1 and H_2 . Then the partial action $\varphi: G \to \operatorname{Part}(M)$ induced from $\overline{\varphi}$ and S extends to an action $\psi: G \cap N$ on some finite graph N > M.

For i = 1, 2, let $K_i := \operatorname{Stab}_{\psi}(H_i) \leq_{f_i} G$. Then $H_i \leq K_i$, since if $h \in H_i$,

$$\psi(h)(H_i) = \varphi(s_1 \cdots s_l)(H_i) = (\overline{\varphi}(s_1) \circ \cdots \circ \overline{\varphi}(s_l))(H_i) = H_i$$

where $h = s_1 \cdots s_l$ for some $s_i \in H$. Finally, $w \notin K_1 K_2$ since if $w = k_1 k_2$, we have $wk_2^{-1} = k_1$, so $\psi(wk_2^{-1})(H_1) = \psi(k_1)(H_1) = H_1$ and

$$\psi(wk_2^{-1})(H_2) = \psi(w)(H_2) = \varphi(w)(H_2) = \overline{\varphi}(w)(H_2) = wH_2.$$

But then $M \models (H_1, wH_2)$, so $H_1 \cap wH_2 \neq \emptyset$, and hence $w \in H_1H_2$.

Contents

- 1 Introduction
- Subgroup separability and EPPA for sets
- 3 Product separability and EPPA for structures
- V-separability and the Ribes-Zalesskii Theorem

The Ribes-Zalesskii Theorem for pro-V topologies

Theorem (Ribes-Zalesskiĭ 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F be a free group. If H_1, \ldots, H_n are finitely generated subgroups of F which are closed in the pro-V topology of F, then their product $H_1 \cdots H_n$ is also closed in the pro-V topology of F.

The Ribes-Zalesskiĭ Theorem for pro-V topologies

Theorem (Ribes-Zalesskiĭ 1994)

Let V be a pseudovariety of groups that is closed under extensions and let F be a free group. If H_1, \ldots, H_n are finitely generated subgroups of F which are closed in the pro-V topology of F, then their product $H_1 \cdots H_n$ is also closed in the pro-V topology of F.

I will present a proof due to Auinger and Steinberg (2005).

Proof of the Ribes-Zalesskiĭ Theorem

Let $H_1, \ldots, H_n \leq F$ be finitely generated subgroups which are closed in the pro-**V** topology of F. We seek, for each word $w \in F$, a group $K \in \mathbf{V}$ such that if $[w]_K \in [H_1 \cdots H_n]_K$, then $w \in H_1 \cdots H_n$. Let $F = F_X$.

Proof of the Ribes-Zalesskii Theorem

Let $H_1, \ldots, H_n \leq F$ be finitely generated subgroups which are closed in the pro-V topology of F. We seek, for each word $w \in F$, a group $K \in V$ such that if $[w]_K \in [H_1 \cdots H_n]_K$, then $w \in H_1 \cdots H_n$. Let $F = F_X$.

Motivated by the proof of Hall's Theorem, consider the group G of deck transformations of expansions of the Stallings' graphs $\Gamma_i := (\mathcal{S}(H_i), v_i)$ for $1 \leq i \leq n$ and $\Gamma_n := (\mathcal{S}(H_n)_w, v_n)$:

$$G := \langle (f_x^1, \dots, f_x^n) : x \in X \rangle \leq G_1 \times \dots \times G_n.$$

Proof of the Ribes-Zalesskiĭ Theorem

Lemma

If $H \leq F$ is finitely generated and closed in the pro-**V** topology of F, then there is an expansion of its Stallings' graph such that $\operatorname{Aut}(\mathcal{S}(H)^+) \in \mathbf{V}$.

Thus $G \in \mathbf{V}$.

Lemma

If $H \leq F$ is finitely generated and closed in the pro-**V** topology of F, then there is an expansion of its Stallings' graph such that $\operatorname{Aut}(\mathcal{S}(H)^+) \in \mathbf{V}$.

Thus $G \in \mathbf{V}$. But G is not 'strong enough', i.e., if $[w]_G \in [H_1 \cdots H_n]_G$, then it is not necessarily true that $w \in H_1 \cdots H_n$.

Lemma

If $H \leq F$ is finitely generated and closed in the pro-**V** topology of F, then there is an expansion of its Stallings' graph such that $Aut(S(H)^+) \in \mathbf{V}$.

Thus $G \in \mathbf{V}$. But G is not 'strong enough', i.e., if $[w]_G \in [H_1 \cdots H_n]_G$, then it is not necessarily true that $w \in H_1 \cdots H_n$.

Let us see why. To show $w \in H_1 \cdots H_n$, it suffices to construct paths γ_i in Γ_i for $1 \le i \le n$ such that $[\gamma_1 \cdots \gamma_n]_F = 1$ and:

Lemma

If $H \leq F$ is finitely generated and closed in the pro-**V** topology of F, then there is an expansion of its Stallings' graph such that $Aut(S(H)^+) \in \mathbf{V}$.

Thus $G \in \mathbf{V}$. But G is not 'strong enough', i.e., if $[w]_G \in [H_1 \cdots H_n]_G$, then it is not necessarily true that $w \in H_1 \cdots H_n$.

Let us see why. To show $w \in H_1 \cdots H_n$, it suffices to construct paths γ_i in Γ_i for $1 \le i \le n$ such that $[\gamma_1 \cdots \gamma_n]_F = 1$ and:

Paths $\gamma_1, \ldots, \gamma_n$ such that $[\gamma_1 \cdots \gamma_n]_G = 1$ are easy to obtain by since we assume $[w]_G \in [H_1 \cdots H_n]_G$; the issue is that we need $[\gamma_1 \cdots \gamma_n]_F = 1$.

The issue is that although $[\gamma_1 \cdots \gamma_n]_G = 1$, the paths that it traces out in the Cayley graph C(G) of G bounds a non-homotopically trivial loop.

The issue is that although $[\gamma_1 \cdots \gamma_n]_G = 1$, the paths that it traces out in the Cayley graph C(G) of G bounds a non-homotopically trivial loop.

Lets strengthen the power of G to also keep track of how many times an edge is traversed, and not just the endpoint!

Fix a prime p and let E^+ be the set of positively-oriented edges in the Cayley graph of G. Let $C_p E^+ := (\mathbb{Z}/p\mathbb{Z})^{\oplus E^+}$ and let

$$G^{\mathbf{Ab}(p)} := \langle (e_x, x) : x \in X \rangle \leq C_p E^+ \rtimes G,$$

where $e_x \in E^+$ is the edge (1, x).

Fix a prime p and let E^+ be the set of positively-oriented edges in the Cayley graph of G. Let $C_pE^+ := (\mathbb{Z}/p\mathbb{Z})^{\oplus E^+}$ and let

$$G^{\mathbf{Ab}(p)} := \langle (e_x, x) : x \in X \rangle \leq C_p E^+ \rtimes G,$$

where $e_x \in E^+$ is the edge (1, x). There is a natural map $F \to G \to G^{\mathbf{Ab}(p)}$, and for any $w \in F$, we have

$$[w]_{G^{\mathbf{Ab}(p)}} = \left(\sum_{e \in E^{+}} [w(e)]_{p} e, [w]_{G}\right)$$

where $[w(e)]_p := w(e) \mod p$ and w(e) is the number of signed traversals of $e \in E^+$ by w.

Fix a prime p and let E^+ be the set of positively-oriented edges in the Cavley graph of G. Let $C_p E^+ := (\mathbb{Z}/p\mathbb{Z})^{\oplus E^+}$ and let

$$G^{\mathbf{Ab}(p)} := \langle (e_x, x) : x \in X \rangle \leq C_p E^+ \rtimes G,$$

where $e_x \in E^+$ is the edge (1, x). There is a natural map $F \to G \to G^{\mathbf{Ab}(p)}$, and for any $w \in F$, we have

$$[w]_{G^{\mathbf{Ab}(p)}} = \left(\sum_{e \in E^{+}} [w(e)]_{p} e, [w]_{G}\right)$$

where $[w(e)]_p := w(e) \mod p$ and w(e) is the number of signed traversals of $e \in E^+$ by w.

 $G^{\mathbf{Ab}(p)}$ not only computes the image $[w]_G$ of a word $w \in F$, but also 'keeps track' of the edges that w traces out in the Cayley graph of G.

Fix a prime p and let E^+ be the set of positively-oriented edges in the Cayley graph of G. Let $C_pE^+ := (\mathbb{Z}/p\mathbb{Z})^{\oplus E^+}$ and let

$$G^{\mathbf{Ab}(p)} := \langle (e_x, x) : x \in X \rangle \leq C_p E^+ \rtimes G,$$

where $e_x \in E^+$ is the edge (1, x). There is a natural map $F woheadrightarrow G^{\mathbf{Ab}(p)}$, and for any $w \in F$, we have

$$[w]_{G^{\mathbf{Ab}(p)}} = \left(\sum_{e \in E^{+}} [w(e)]_{p} e, [w]_{G}\right)$$

where $[w(e)]_p := w(e) \mod p$ and w(e) is the number of signed traversals of $e \in E^+$ by w.

 $G^{\mathbf{Ab}(p)}$ not only computes the image $[w]_G$ of a word $w \in F$, but also 'keeps track' of the edges that w traces out in the Cayley graph of G.

Lemma

For any group $G \in \mathbf{V}$, there is a prime p such that $G^{\mathbf{Ab}(p)} \in \mathbf{V}$.

We claim that $K := G^{\mathbf{Ab}(p)}$ for appropriate p works when n = 2; the general case requires an iterated extension and a (painful but easy) induction.

We claim that $K := G^{\mathbf{Ab}(p)}$ for appropriate p works when n = 2; the general case requires an iterated extension and a (painful but easy) induction.

Indeed, if $[w]_K \in [H_1 H_2]_K$, then there exist paths γ_i' in Γ_i , for i = 1, 2, such that $[\gamma_1' \gamma_2']_K = 1$ as before; in particular, $[\gamma_1' \gamma_2']_G = 1$.

We claim that $K := G^{\mathbf{Ab}(p)}$ for appropriate p works when n = 2; the general case requires an iterated extension and a (painful but easy) induction.

Indeed, if $[w]_K \in [H_1H_2]_K$, then there exist paths γ_i' in Γ_i , for i = 1, 2, such that $[\gamma_1'\gamma_2']_K = 1$ as before; in particular, $[\gamma_1'\gamma_2']_G = 1$. Tracing these paths out in the Cayley graph of G gives the following picture.

Thank you!

References

- [AS05] K. Auinger and B. Steinberg. "A constructive version of the Ribes-Zalesskii product theorem". In: Mathematische Zeitschrift 250 (2005), pp. 287–297.
- [Cou01] Thierry Coulbois. "Free product, profinite topology, and finitely generated subgroups". In: Int. J. Algebra Comput. 11.2 (2001), pp. 171–184.
- [HL00] Bernhard Herwig and Daniel Lascar. "Extending Partial Automorphisms and the Profinite Topology on Free Groups". In: Trans. Amer. Math. Soc. 352.5 (2000), pp. 1985–2021.
- [Hal49] M. Hall Jr. "Coset representations in free groups". In: Trans. Amer. Math. Soc. 67.2 (1949), pp. 421–432.
- [RZ93] L. Ribes and P. Zalesskiĭ. "On The Profinite Topology on a Free Group". In: Bull. London Math. Soc. 25.1 (1993), pp. 37–43.
- [Sta83] J. R. Stallings. "Topology of Finite Graphs". In: Inventiones Mathematicae 71 (1983), pp. 551–565.